On alternating subgroup $A_5$ in autotopism group of finite semifield plane

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autotopism groups of cyclic semifield planes

In this article we investigate the autotopism group of the so-called cyclic semifield planes. We show that the group generated by the homology groups of the nuclei is already the full group of autotopisms that are linear with respect to the nuclei. The full autotopism group is also computed with the exception of one special subcase.

متن کامل

The Subgroup Structure of Finite Alternating and Symmetric Groups

In this course we will be studying the subgroup structure of the finite alternating and symmetric groups. What does the phrase “study the subgroups of symmetric groups” mean? In this introduction I’ll suggest an answer to that question, and attempt to convince you that answer has some merit. In the process you’ll get some idea of the material we will be covering, and I’ll attempt to motivate th...

متن کامل

On the Subgroup Lattice of an Abelian Finite Group

The aim of this paper is to give some connections between the structure of an abelian finite group and the structure of its subgroup lattice. Let (G, +) be an abelian group. Then the set L(G) of subgroups of G is a modular and complete lattice. Moreover, we suppose that G is finite of order n. If L n is the divisors lattice of n, then the following function is well defined: ord : L(G) −→ L n , ...

متن کامل

On $m^{th}$-autocommutator subgroup of finite abelian groups

Let $G$ be a group and $Aut(G)$ be the group of automorphisms of‎ ‎$G$‎. ‎For any natural‎ number $m$‎, ‎the $m^{th}$-autocommutator subgroup of $G$ is defined‎ ‎as‎: ‎$$K_{m} (G)=langle[g,alpha_{1},ldots,alpha_{m}] |gin G‎,‎alpha_{1},ldots,alpha_{m}in Aut(G)rangle.$$‎ ‎In this paper‎, ‎we obtain the $m^{th}$-autocommutator subgroup of‎ ‎all finite abelian groups‎.

متن کامل

Solvable $L$-subgroup of an $L$-group

In this paper, we study the notion of solvable $L$-subgroup of an $L$-group and provide its level subset characterization and this justifies the suitability of this extension. Throughout this work, we have used normality of an $L$-subgroup of an $L$-group in the sense of Wu rather than Liu.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sibirskie Elektronnye Matematicheskie Izvestiya

سال: 2020

ISSN: 1813-3304

DOI: 10.33048/semi.2020.17.004